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Summary 

Background Mutations in factor H (HF1) have been reported
in a consistent number of diarrhoea-negative, non-Shiga
toxin-associated cases of haemolytic uraemic syndrome 
(D-HUS). However, most patients with D-HUS have no HF1
mutations, despite decreased serum concentrations of C3.
Our aim, therefore, was to assess whether genetic
abnormalities in other complement regulatory proteins are
involved. 

Methods We screened genes that encode the complement
regulatory proteins—ie, factor H related 5, complement
receptor 1, and membrane cofactor protein (MCP)—by PCR-
single-strand conformation polymorphism (PCR-SSCP) and by
direct sequencing, in 25 consecutive patients with D-HUS, an
abnormal complement profile, and no HF1 mutation, from our
International Registry of Recurrent and Familial HUS/TTP
(HUS/thrombotic thrombocytopenic purpura).

Findings We identified a heterozygous mutation in MCP, a
surface-bound complement regulator, in two patients with a
familial history of HUS. The mutation causes a change in
three aminoacids at position 233–35 and insertion of a
premature stop-codon, which results in loss of the
transmembrane domain of the protein and severely reduced
cell-surface expression of MCP.

Interpretation Results of previous studies on HF1 indicate
an association between HF1 deficiency and D-HUS. Our
findings of an MCP mutation in two related patients suggest
that impaired regulation of complement activation might be a
factor in the pathogenesis of genetic forms of HUS. MCP
could be a second putative candidate gene for D-HUS. The
protein is highly expressed in the kidney and plays a major
part in regulation of glomerular C3 activation. We propose,
therefore, that reduced expression of MCP in response to
complement-activating stimuli could prevent restriction of
complement deposition on glomerular endothelial cells,
leading to microvascular cell damage and tissue injury.
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Introduction
Haemolytic uraemic syndrome (HUS) is a rare disease of
microangiopathic haemolysis, thrombocytopenia, and renal
failure.1,2 The most common form of HUS in children, with
predominant renal failure, is associated with infection by
Escherichia coli, which produce a powerful Shiga-like toxin.1

This form of the disease (D+HUS) usually presents with a
diarrhoea prodrome and has an excellent prognosis in most
cases.3 By contrast, non-Shiga toxin-associated and
diarrhoea-negative forms of HUS (D-HUS) have a much
poorer outcome (often end-stage renal failure or death4–6),
with patients prone to relapse. There is sometimes a
clustering of affected individuals within families, suggesting
a genetic predisposition to the disease. Both autosomal
dominant and autosomal recessive forms of inheritance
have been noted, with precipitating events such as
pregnancy, virus-like disease, or sepsis reported in some
instances.7–11 Low serum concentrations of the third
component of complement (C3) have been identified in
patients with D-HUS.12,13 Among such patients, a
subgroup—between 13% and 30%—carry mutations in the
gene encoding for factor H (HF1), a plasma protein that
inhibits the activation of the alternative pathway of
complement.14–19 However, two thirds of patients with D-

HUS have no HF1 mutations, despite decreased C3
concentrations,1,18,19 indicating a role for genetic
abnormalities in other complement regulatory proteins. 

Methods
Participants
Between, 1996, and May, 2003, we enrolled consecutive
patients with familial, recurrent, or sporadic D-HUS with
no HF1 mutations but an abnormal serum complement
profile (defined as C3 serum concentrations <0·83 g/L12 or
a plasma C3d/serum C3 ratio >0·015) through the
International Registry of Recurrent and Familial
HUS/TTP (HUS/thrombotic thrombocytopenic purpura),
a network of 60 Haematology and Nephrology Units
established under the coordination of the Clinical
Research Centre for Rare Diseases “Aldo e Cele Daccò’’.
We also recruited healthy blood donors as controls. For
protein expression studies in peripheral blood
mononuclear cells (PBMC), healthy female controls and
uraemic female controls on chronic haemodialysis for
causes other than HUS, were recruited. 

All participants received detailed information on the
purposes and design of the study and provided informed
written consent, according to the guidelines of the
Declaration of Helsinki. The protocol was approved by
the institutional review board of the “Mario Negri”
Institute for Pharmacological Research.

Procedures
With respect to complement profile assessment, we
quantified serum C3 and C4 concentrations by kinetic
nephelometry, and ascertained serum concentrations of
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(62/1 acryl/bis) acrylamide gel in TAE buffer (pH 6·8) at
35 Watt for 3–5 h at 4°C. We visualised gels by silver
staining. Aberrant bands were sequenced.

We did expression studies in PBMC, which we
separated by density gradient centrifugation with Ficoll-
Paque, according to standard procedure. PBMC were
incubated with a fluorescein isothiocyanate (FITC)-
conjugated mouse monoclonal antibody against human
MCP (20 �L/106 PBMC, BD Biosciences Pharmingen,
San Diego, CA, USA) or with FITC-mouse IgG (isotype
control), and analysed by FACSort (BD Biosciences,
Mountain View, CA, USA). 

Role of the funding source 
The sponsors of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.

Results
We enrolled 25 patients with familial (n=12), recurrent
(n=6), or sporadic (n=7) D-HUS, all of whom were white,
had no HF1 mutations, and had an abnormal serum
complement profile. We also enrolled 100 healthy blood
donors and, for protein expression studies in PBMC, six
healthy female controls and three uraemic female
controls. 

Analysis of FHR5, indicated a heterozygous 343C→T
polymorphism leading to a L66F change in short
consensus repeat (SCR) 1 in two patients and in one
healthy control, a heterozygous 1160G→A polymorphism
leading to a R338H change in SCR6 in four patients and
one healthy control, and a heterozygous 1634T→G
polymorphism causing a M496R change in one patient
and one control.

With respect to the membrane-bound regulatory
protein CR1, we identified no mutations in the patients,
and the distribution of known CR1 polymorphisms was
comparable in patients and controls.24 In particular,
quantitative expression of CR1 on cell surface is regulated
by a genetic element that is linked to the site of a HindIII
restriction fragment length polymorphism of the CR1
gene that determines either a high (H) or a low (L)
expression allele.25 Among the 11 polymorphisms
described in the CR1 coding sequence, the 5507C→G
(P1827R) in exon 33 is in strict linkage disequilibrium
with the HindIII polymorphism: specifically, the C variant
is linked to the H allele, and the G variant to the L allele.26

The distribution of 5507C→G genotypes was similar in
HUS patients (CC=55%, CG=40%, GG=5%) and in
controls (CC=56%, CG=37%, GG=7%), thus excluding
an association between CR1 L allele and D-HUS. 

However, a mutation in MCP was
noted in two of 25 D-HUS patients—
in a 21-year-old woman with a history
of recurrent HUS (identified as
proband in the report) and in her
affected brother (table 2). The results
obtained for these two individuals and
their parents, form the basis of this
report.

Disease onset in the proband was at
age 16 months, when she developed a
fever, haemolytic anaemia, and
thrombocytopenia. At that time, renal
function was normal. Thereafter, the
patient had six recurrences of
thrombotic microangiopathy, all
associated with deteriorating renal
function. Treatment consisted of
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factor H, factor I, and factor B by radial immunodiffusion
(RID; The Binding Site, Birmingham, UK).12 C3d was
assessed on plasma collected on EDTA by RID (The
Binding Site).

We measured plasma ADAMTS13 activity as
previously described,20 using the collagen binding assay.
The presence of ADAMTS13 inhibitory antibodies was
assayed by testing ADAMTS13 activity in mixtures of
plasma taken from patients and from a plasma pool at
different dilutions after 30 min incubation at 37°C.20

To identify the causative gene(s) of HUS in patients
with no HF1 mutations, we looked at abnormalities in the
complement regulatory proteins—factor H related 5
(FHR5),21 complement receptor 1 (CR1),22 and
membrane cofactor protein (MCP).23 We extracted
genomic DNA from peripheral blood, according to
standard protocols (Nucleon BACC2 kit, Amersham,
UK). The coding sequences of HF1, FHR5, CR1, and
MCP were screened by PCR-SINGLE STRANDED

CONFORMATIONAL POLYMORPHISM ANALYSIS (PCR-SSCP),
using primers designed on published genomic sequences
(NT-004671, NT-021877).19,20,24 A list of primers used for
MCP gene analysis is reported in table 1. We did PCR
reactions in a 20 �L volume, containing 100 ng DNA,
15 pmol of each primer, 16 nmol deoxynucleoside
triphosphates (dNTP), 2·25 mmol/L magnesium
chloride, 1 U Taq polymerase (Taq Gold, PE Applied
Biosystems, Foster City, CA, USA), and PCR buffer.
10 min denaturation at 94°C was followed by 35 PCR
cycles (94°C for 45 s, 55·5°C for 30 s, and 72°C for 45 s)
and by 10 min extension at 72°C. We mixed samples with
20 �L of loading buffer, denatured them at 65°C for 
10 min, and electrophoresed onto non-denaturing 6%

GLOSSARY

CLASSICAL AND ALTERNATIVE COMPLEMENT PATHWAYS

Complement is part of the innate immune system and underlies the
main effector mechanism of antibody-mediated immunity. The classical
pathway is initiated by the binding of C1 complex to antibodies bound
to an antigen on the surface of a bacterial cell. The alternative pathway
is initiated by the covalent binding of a small amount of C3b to hydroxyl
groups on cell-surface carbohydrates and proteins, and is activated by
the low-grade cleavage of C3 in plasma. The two pathways lead to the
formation of specific C3 and C5 convertases, converge in the formation
of the membrane attack complex (MAC), and end with cell lysis.

SINGLE-STRANDED CONFORMATIONAL POLYMORPHISM
(SSCP) ANALYSIS 

A method for distinguishing between DNA fragments with different
sequences (polymorphisms) amplified from the same genomic region
based on differences in the mobility of the single-stranded DNA during
polyacrylamide gel electrophoresis. 

Function Primer

Sense Antisense
Exon

1 Signal 5�-CTGGATGCTTTGTGAGTTGGG-3� 5�-TCTTGCCCGACTGAGGAGAG-3�
peptide

2 SCR1 5�-ACTTCATCTTCATGTTCCTATTCTCTTATC-3� 5�-ACCCCAAAATGTATGCAAATCTCT-3�
3 SCR2A 5�-CAGATCTGTTTTATAACTGGATTGAAA-3� 5�-GAAGAGAAGCAAAACAAAAATAAAATT-3�
4 SCR2B 5�-GTGTGTCTTATTAATTGCTATACAAAACAGT-3� 5�-AGAAACCTCTTTGGGATCTTTGTTA-3�
5 SCR3 5�-TGTCTTAATCTTTTACATTTCCTTTCCTCT-3� 5�-CACATACACCTGCTTTGTTTATCTGT-3�
6 SCR4 5�-CTTGTCTCTGTTCACACTGGAAATTACT-3� 5�-CAGCAACAACAATAACAAAACCAAGA-3�
7, 8 STP A, B 5�-CCCAAGTGGTTGATCTTCTAACATT-3� 5�-ATAAGTGAACATCACCAGAAATTTGAA-3�
9 STP C 5�-TTGATAAGGCCCTGGTGAATTT-3� 5�-CCTGCACGCTGTGCACA-3�
10 Unknown 5�-AAAATCACCCTATGAGTTTAAAGGATTT-3� 5�-CCTACACGTTTCTACACATACTACCACTTA-3�
11 TM 5�-GGAGATCCATGTGTTCAACATCTT-3� 5�-AATGCATGTCTTCACAATAATTTTTTG-3�
12 TM 5�-CAGAATTATATGTCATTTGTTTCCTGG-3� 5�-AAGGACCAAGAAGTTAAAAGAAACATG-3�
13 CT 5�-TCGTTTCTTTTTGGTTTGAAGTCA-3� 5�-GCAAACCTTTCTCTCATCTCTCCT- 3�
14 CT 5�-GGCTTCTGGAATTTAATTTCTGTACTTAA-3� 5�-GTCAAAGATGAACTGGCAAACC- 3�

STP=serine-threonine-proline rich domain. TM=trans-membrane domain. CT=cytoplasmic tail.

Table 1: Primers used for MCP screening
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plasma exchanges and infusions, steroids, and blood
transfusions, which led to complete recovery of blood
abnormalities and renal function. The last episode of
disease recurrence, at age 20 years, was characterised by
anaemia, thrombocytopenia, and severe impairment of
renal function. Transient improvement was achieved by
treatment with plasma exchanges and methyl-
prednisolone, but this response was not sustained and,
despite maintenance treatment with plasma exchanges,
renal function progressively deteriorated and the patient
was started on a chronic haemodialysis programme. 
A renal biopsy showed irreversible changes of 
chronic nephropathy with typical features of HUS,
including diffuse narrowing/occlusion of vascular 
vessels and severe glomerular ischaemia. The proband’s
brother had two episodes of HUS at
age 9 years. Both episodes were
characterised by severe haemolytic
anaemia and acute renal insufficiency
and resolved without plasma
treatment, with no renal sequelae. He
was referred to our registry at age 
16 years. The proband and her
brother had no signs of micro-
angiopathic haemolysis (table 2) at
the time of our examination. At that
time, the proband was aged 21 years
and was on chronic haemodialysis,
whereas her brother had a normal
renal function. Both parents are
healthy with no history of renal
disease (figure 1).

We noted reduced serum
concentrations of C3 and a higher than
normal C3d/C3 ratio in the proband,
whereas C4 concentrations were
within the normal range, which is
consistent with a selective chronic
activation of the alternative pathway of
complement (table 2). C3 and C4
concentrations were normal in the
proband’s brother, however C3d
concentration and the C3d/C3 ratio
were higher than normal (table 2). In
the parents, concentrations of C3
(father: 1·1 g/L; mother: 0·9 g/L) 
and C4 (father: 0·3 g/L; mother: 
0·3 g/L) were within the normal range.
Factor H serum concentrations were
normal in the proband and in her
mother (619 mg/L), but were higher
than normal range in the father 
(938 mg/L) and in the brother 
(table 2). Factor B and factor I con-
centrations were within the normal
range (table 2).

We also measured the activity of ADAMTS13, a
plasma protease that cleaves von Willebrand Factor
multimers soon after their release by endothelial cells.20

This measurement was done since deficiency of
ADAMTS13 activity has been reported in patients with
TTP, a thrombotic microangiopathy that shares many
features with HUS, but also in some patients with HUS.20

ADAMTS13 activity was normal in all family members
(father: 106%; mother: 76%; brother: table 2), though in
the proband it fell in the lower limit of normal range 
(table 2).

The proband and her affected brother were
heterozygous for the 1160G→A polymorphism in FHR5
and were homozygous for the C variant of the
polymorphism 5507C→G in CR1, associated with a high
expression allele (H).26

SSCP analysis of the MCP gene indicated an
anomalous pattern in exon 6 (figure 1). By sequencing we
found a heterozygous 2-bp deletion, causing a change in
three aminoacids at position 233–35 and insertion of a
premature stop-codon at position 236, which resulted in
loss of the C-terminus of the protein (figure 1). The
mutation was inherited by the proband from her father
and was also carried by the affected brother, but was not
found in the mother or in any of the 100 healthy controls. 

We undertook expression studies in PBMC. FACS
analysis of PBMC isolated from the proband and from the
other MCP mutation carriers in the family (the father and

Proband Brother

Parameter (normal range)
Platelets (150–400�109/L) 178 247
Lactate dehydrogenase (230–460 U/L) 375 304
C3 (0·8–1·8 g/L) 0·5 1·3
C4 (0·2–0·5 g/L) 0·3 0·3
C3d (3·03–18·23 mg/L) 14·8 49·8
C3d/C3 (0·005–0·015) 0·031 0·039
Factor H (350–750 mg/L) 589·5 908
Factor B (191–382 mg/L) 210·5 262·7
Factor I (28–58 mg/L) 38·3 41·5
ADAMTS13 activity (50–150%) 68 116

Table 2: Biochemical data for proband and her brother
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Figure 1: Genetic studies of MCP
A=pedigree of family; arrow indicates proband, affected individuals in black, healthy carrier identified
by black dot. B=SSCP analysis of exon 6 of MCP. C=sequence of exon 6 of MCP in proband; arrow
indicates heterozygous mutation, causing 2-bp deletion (delA843-C844). D=structure and functional
domains of MCP protein; arrow indicates interruption of mutant protein translation due to stop codon
in SCR4, causing loss of C-terminus, including transmembrane domain. 
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tail (figure 1).23 Because the delA843-
C844 mutation causes loss of the MCP
C-terminus, comprising part of all of
these domains, we reasoned that it
might affect cell-surface expression of
MCP through inhibition of insertion of
the mutant protein into the plasma
membrane; results of our expression
studies in PBMC lend support to this
notion.

Together, the findings of studies14–19

on HF1, showing an association
between HF1 deficiency and D-HUS,
and our findings of an MCP gene
mutation in two patients within one
family make a strong case for impaired
regulation of complement activation as
a determinant factor of the disease in
genetic forms of HUS. MCP is highly
expressed in the kidney27 and plays a
major part in regulating glomerular C3
activation.28 Reduced expression of
MCP in the presence of stimuli that
activate the complement system—eg,
infection, cytotoxic drugs, antibodies,
or immune complexes—might prevent
restriction of complement deposition
on glomerular endothelial cells, leading
to microvascular cell damage and tissue

injury. That the father had had no clinical manifestations
of HUS despite having the same MCP mutation as the
proband and her affected brother is consistent with an
autosomal-dominant mode of transmission with reduced
penetrance, as noted in HF1 mutation carriers.15–19 The
incomplete penetrance of the disease in carriers of either
HF115–19 or MCP mutations indicates that D-HUS is a
complex disorder that fully manifests in the presence of
environmental factors and multiple genetic modifier loci.
This notion accords with our finding that, in the pedigree
studied, MCP expression was higher in the father than in
the proband and in her affected brother. Genetically
controlled variations in serum concentrations of HF1
could also explain the incomplete penetrance of the
disease in MCP mutation carriers. In this respect, HF1
concentrations are within normal range in the proband,
but above normal in the non-affected father. Similarly,
HF1 serum concentration was high in the proband’s
brother, who had a mild form of the disease despite the
same MCP mutation. Our provisional interpretation is
that in healthy individuals the wide range of variation in
the HF1 serum concentration can be irrelevant, but in an
individual with an MCP mutation a higher than normal
amount of HF1 would be essential to compensate for the
defective cofactor activity due to MCP haploinsufficiency. 

On the basis of our data, we cannot rule out the
possibility that the MCP mutation identified is unrelated to
HUS and indicates a coincidental finding of a rare genetic
variant. However, this possibility is unlikely since the
mutation is present in two of 25 patients with D-HUS, but
in none of 100 healthy controls. Additionally, MCP has a
main role in complement regulation, which is defective in
HUS. Genetic screening of HF1 and MCP could unveil
precious information for a more tailored clinical
management of patients with D-HUS. Treatment of 
D-HUS relies on plasma exchange or infusion, however
50%18 to 75%19 of patients, often small babies, progress to
end-stage renal disease and need replacement therapy.
One of the most debated issues is whether kidney
transplantation is feasible in HUS. Children with Shiga-
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the brother) showed around 50% reduction in MCP
median fluorescence intensity, by comparison with
PBMC from healthy controls (figure 2), indicating that
the mutation affected the expression concentrations of
MCP protein. By contrast the mother, who does not carry
the mutation, had a normal MCP expression pattern
(figure 2). Similar results were obtained when data were
expressed as the proportion of MCP+ cells (proband:
40%; brother: 23%; father: 50%; mother: 72% vs healthy
controls: 86% [SD 3%]). The defect was not the
consequence of uraemia, since MCP expression levels in
PBMC from patients on chronic haemodialysis (median
fluorescence intensity, figure 2; proportion MCP+ cells:
72% [5]) were higher than those in the proband. Both the
proportion of MCP+ cells and the median fluorescence
intensity (figure 2) in PBMC from the three mutation
carriers lie outside the range of values of MCP+ cells
(81–90%) and MCP median fluorescence intensity
recorded in PBMC from healthy controls and from
individuals on haemodialysis (MCP+ cells: 68–74%;
median fluorescence intensity: figure 2).

Discussion
Our results of genetic screening in 25 consecutive D-HUS
patients without mutations in HF1 but presenting with
abnormalities in the ALTERNATIVE but not in the CLASSICAL

PATHWAY OF COMPLEMENT, led us to identify a candidate
gene for D-HUS in addition to HF1. Based on the fact
that these patients had signs of activation of the
complement system in their blood, we focused our search
for a genetic cause of the disease on genes involved in
complement regulation. We identified a heterozygous
mutation in the MCP gene in one family.

MCP is a widely expressed transmembrane
glycoprotein that regulates complement activation. It
serves as a cofactor for factor I to cleave C3b and C4b
when they are deposited on host cells.23 MCP has four
extracellular contiguous modules important for its
inhibitory activity, followed by a serine-threonine-proline
rich domain, a transmembrane domain, and a cytoplasmic
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Figure 2: Expression studies of MCP protein
Flow cytometry analysis of MCP expression in PBMC from three mutation carriers (proband, brother
and father), healthy mother, dialysed controls (n=3), and healthy controls (n=6). A: data are mean
(SD); ranges in parentheses. B: histograms from proband, a representative dialysed control, and a
representative healthy control.
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toxin associated HUS rarely progress to end-stage renal
disease, but when they do so, transplantation often results
in a good prognosis.29 Notably, graft outcome is less
favourable in children30 and adults31 with D-HUS, with
recurrences occurring in around 50% of patients and graft
failure developing in all of them. Among patients with 
D-HUS and HF1 mutations, the recurrence range is
30–75%, according to different surveys.18,32 In patients of
our registry, the five individuals with D-HUS and HF1
mutations who received a transplant had disease
recurrence on the grafted kidney within a few weeks (range
1 week to 6 months) after surgery.19 In view of the fact that
HF1 is a plasma protein mainly of liver origin, indirect
evidence suggests that a kidney transplant does not correct
the HF1 genetic defect (Noris M, unpublished). To
speculate that a dysfunction in MCP, which is a
membrane-bound protein highly expressed in the kidney,
can be corrected by transplanting a normal kidney, is
tempting. The graft, bearing wild-type MCP expressed on
renal-cell surfaces, should conceivably be protected from
disease recurrence. 
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